direct product, metabelian, supersoluble, monomial
Aliases: C3×C32⋊5SD16, C33⋊11SD16, C12.76S32, C12.29(S3×C6), Dic6⋊1(C3×S3), (C3×Dic6)⋊2C6, C6.26(C3×D12), (C3×C6).73D12, C12⋊S3.4C6, (C3×Dic6)⋊10S3, (C3×C12).174D6, C32⋊8(C3×SD16), (C32×C6).22D4, (C32×Dic6)⋊2C2, C32⋊12(C24⋊C2), C6.44(C3⋊D12), (C32×C12).5C22, C32⋊10(Q8⋊2S3), (C3×C3⋊C8)⋊3C6, C3⋊C8⋊3(C3×S3), C4.3(C3×S32), (C3×C3⋊C8)⋊10S3, C3⋊2(C3×C24⋊C2), (C32×C3⋊C8)⋊6C2, C6.3(C3×C3⋊D4), C3⋊1(C3×Q8⋊2S3), (C3×C6).21(C3×D4), (C3×C12).39(C2×C6), C2.6(C3×C3⋊D12), (C3×C12⋊S3).1C2, (C3×C6).72(C3⋊D4), SmallGroup(432,422)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C32⋊5SD16
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe=b-1, cd=dc, ece=c-1, ede=d3 >
Subgroups: 520 in 122 conjugacy classes, 36 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C32, Dic3, C12, C12, D6, C2×C6, SD16, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, Dic6, D12, C3×D4, C3×Q8, C33, C3×Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C24⋊C2, Q8⋊2S3, C3×SD16, C3×C3⋊S3, C32×C6, C3×C3⋊C8, C3×C3⋊C8, C3×C24, C3×Dic6, C3×Dic6, C3×D12, C12⋊S3, Q8×C32, C32×Dic3, C32×C12, C6×C3⋊S3, C32⋊5SD16, C3×C24⋊C2, C3×Q8⋊2S3, C32×C3⋊C8, C32×Dic6, C3×C12⋊S3, C3×C32⋊5SD16
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, SD16, C3×S3, D12, C3⋊D4, C3×D4, S32, S3×C6, C24⋊C2, Q8⋊2S3, C3×SD16, C3⋊D12, C3×D12, C3×C3⋊D4, C3×S32, C32⋊5SD16, C3×C24⋊C2, C3×Q8⋊2S3, C3×C3⋊D12, C3×C32⋊5SD16
(1 31 33)(2 32 34)(3 25 35)(4 26 36)(5 27 37)(6 28 38)(7 29 39)(8 30 40)(9 21 44)(10 22 45)(11 23 46)(12 24 47)(13 17 48)(14 18 41)(15 19 42)(16 20 43)
(1 33 31)(2 32 34)(3 35 25)(4 26 36)(5 37 27)(6 28 38)(7 39 29)(8 30 40)(9 44 21)(10 22 45)(11 46 23)(12 24 47)(13 48 17)(14 18 41)(15 42 19)(16 20 43)
(1 31 33)(2 32 34)(3 25 35)(4 26 36)(5 27 37)(6 28 38)(7 29 39)(8 30 40)(9 44 21)(10 45 22)(11 46 23)(12 47 24)(13 48 17)(14 41 18)(15 42 19)(16 43 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 20)(2 23)(3 18)(4 21)(5 24)(6 19)(7 22)(8 17)(9 36)(10 39)(11 34)(12 37)(13 40)(14 35)(15 38)(16 33)(25 41)(26 44)(27 47)(28 42)(29 45)(30 48)(31 43)(32 46)
G:=sub<Sym(48)| (1,31,33)(2,32,34)(3,25,35)(4,26,36)(5,27,37)(6,28,38)(7,29,39)(8,30,40)(9,21,44)(10,22,45)(11,23,46)(12,24,47)(13,17,48)(14,18,41)(15,19,42)(16,20,43), (1,33,31)(2,32,34)(3,35,25)(4,26,36)(5,37,27)(6,28,38)(7,39,29)(8,30,40)(9,44,21)(10,22,45)(11,46,23)(12,24,47)(13,48,17)(14,18,41)(15,42,19)(16,20,43), (1,31,33)(2,32,34)(3,25,35)(4,26,36)(5,27,37)(6,28,38)(7,29,39)(8,30,40)(9,44,21)(10,45,22)(11,46,23)(12,47,24)(13,48,17)(14,41,18)(15,42,19)(16,43,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,20)(2,23)(3,18)(4,21)(5,24)(6,19)(7,22)(8,17)(9,36)(10,39)(11,34)(12,37)(13,40)(14,35)(15,38)(16,33)(25,41)(26,44)(27,47)(28,42)(29,45)(30,48)(31,43)(32,46)>;
G:=Group( (1,31,33)(2,32,34)(3,25,35)(4,26,36)(5,27,37)(6,28,38)(7,29,39)(8,30,40)(9,21,44)(10,22,45)(11,23,46)(12,24,47)(13,17,48)(14,18,41)(15,19,42)(16,20,43), (1,33,31)(2,32,34)(3,35,25)(4,26,36)(5,37,27)(6,28,38)(7,39,29)(8,30,40)(9,44,21)(10,22,45)(11,46,23)(12,24,47)(13,48,17)(14,18,41)(15,42,19)(16,20,43), (1,31,33)(2,32,34)(3,25,35)(4,26,36)(5,27,37)(6,28,38)(7,29,39)(8,30,40)(9,44,21)(10,45,22)(11,46,23)(12,47,24)(13,48,17)(14,41,18)(15,42,19)(16,43,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,20)(2,23)(3,18)(4,21)(5,24)(6,19)(7,22)(8,17)(9,36)(10,39)(11,34)(12,37)(13,40)(14,35)(15,38)(16,33)(25,41)(26,44)(27,47)(28,42)(29,45)(30,48)(31,43)(32,46) );
G=PermutationGroup([[(1,31,33),(2,32,34),(3,25,35),(4,26,36),(5,27,37),(6,28,38),(7,29,39),(8,30,40),(9,21,44),(10,22,45),(11,23,46),(12,24,47),(13,17,48),(14,18,41),(15,19,42),(16,20,43)], [(1,33,31),(2,32,34),(3,35,25),(4,26,36),(5,37,27),(6,28,38),(7,39,29),(8,30,40),(9,44,21),(10,22,45),(11,46,23),(12,24,47),(13,48,17),(14,18,41),(15,42,19),(16,20,43)], [(1,31,33),(2,32,34),(3,25,35),(4,26,36),(5,27,37),(6,28,38),(7,29,39),(8,30,40),(9,44,21),(10,45,22),(11,46,23),(12,47,24),(13,48,17),(14,41,18),(15,42,19),(16,43,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,20),(2,23),(3,18),(4,21),(5,24),(6,19),(7,22),(8,17),(9,36),(10,39),(11,34),(12,37),(13,40),(14,35),(15,38),(16,33),(25,41),(26,44),(27,47),(28,42),(29,45),(30,48),(31,43),(32,46)]])
72 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 4A | 4B | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 6L | 6M | 8A | 8B | 12A | ··· | 12H | 12I | ··· | 12Q | 12R | ··· | 12Y | 24A | ··· | 24P |
order | 1 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | 36 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | 12 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 36 | 36 | 6 | 6 | 2 | ··· | 2 | 4 | ··· | 4 | 12 | ··· | 12 | 6 | ··· | 6 |
72 irreducible representations
Matrix representation of C3×C32⋊5SD16 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 72 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
51 | 47 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
21 | 57 | 0 | 0 | 0 | 0 |
64 | 52 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[51,0,0,0,0,0,47,10,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72],[21,64,0,0,0,0,57,52,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;
C3×C32⋊5SD16 in GAP, Magma, Sage, TeX
C_3\times C_3^2\rtimes_5{\rm SD}_{16}
% in TeX
G:=Group("C3xC3^2:5SD16");
// GroupNames label
G:=SmallGroup(432,422);
// by ID
G=gap.SmallGroup(432,422);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,197,92,1011,80,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^3>;
// generators/relations