Copied to
clipboard

G = C3×C325SD16order 432 = 24·33

Direct product of C3 and C325SD16

direct product, metabelian, supersoluble, monomial

Aliases: C3×C325SD16, C3311SD16, C12.76S32, C12.29(S3×C6), Dic61(C3×S3), (C3×Dic6)⋊2C6, C6.26(C3×D12), (C3×C6).73D12, C12⋊S3.4C6, (C3×Dic6)⋊10S3, (C3×C12).174D6, C328(C3×SD16), (C32×C6).22D4, (C32×Dic6)⋊2C2, C3212(C24⋊C2), C6.44(C3⋊D12), (C32×C12).5C22, C3210(Q82S3), (C3×C3⋊C8)⋊3C6, C3⋊C83(C3×S3), C4.3(C3×S32), (C3×C3⋊C8)⋊10S3, C32(C3×C24⋊C2), (C32×C3⋊C8)⋊6C2, C6.3(C3×C3⋊D4), C31(C3×Q82S3), (C3×C6).21(C3×D4), (C3×C12).39(C2×C6), C2.6(C3×C3⋊D12), (C3×C12⋊S3).1C2, (C3×C6).72(C3⋊D4), SmallGroup(432,422)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C3×C325SD16
C1C3C32C3×C6C3×C12C32×C12C32×Dic6 — C3×C325SD16
C32C3×C6C3×C12 — C3×C325SD16
C1C6C12

Generators and relations for C3×C325SD16
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe=b-1, cd=dc, ece=c-1, ede=d3 >

Subgroups: 520 in 122 conjugacy classes, 36 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C32, Dic3, C12, C12, D6, C2×C6, SD16, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, Dic6, D12, C3×D4, C3×Q8, C33, C3×Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C24⋊C2, Q82S3, C3×SD16, C3×C3⋊S3, C32×C6, C3×C3⋊C8, C3×C3⋊C8, C3×C24, C3×Dic6, C3×Dic6, C3×D12, C12⋊S3, Q8×C32, C32×Dic3, C32×C12, C6×C3⋊S3, C325SD16, C3×C24⋊C2, C3×Q82S3, C32×C3⋊C8, C32×Dic6, C3×C12⋊S3, C3×C325SD16
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, SD16, C3×S3, D12, C3⋊D4, C3×D4, S32, S3×C6, C24⋊C2, Q82S3, C3×SD16, C3⋊D12, C3×D12, C3×C3⋊D4, C3×S32, C325SD16, C3×C24⋊C2, C3×Q82S3, C3×C3⋊D12, C3×C325SD16

Smallest permutation representation of C3×C325SD16
On 48 points
Generators in S48
(1 31 33)(2 32 34)(3 25 35)(4 26 36)(5 27 37)(6 28 38)(7 29 39)(8 30 40)(9 21 44)(10 22 45)(11 23 46)(12 24 47)(13 17 48)(14 18 41)(15 19 42)(16 20 43)
(1 33 31)(2 32 34)(3 35 25)(4 26 36)(5 37 27)(6 28 38)(7 39 29)(8 30 40)(9 44 21)(10 22 45)(11 46 23)(12 24 47)(13 48 17)(14 18 41)(15 42 19)(16 20 43)
(1 31 33)(2 32 34)(3 25 35)(4 26 36)(5 27 37)(6 28 38)(7 29 39)(8 30 40)(9 44 21)(10 45 22)(11 46 23)(12 47 24)(13 48 17)(14 41 18)(15 42 19)(16 43 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 20)(2 23)(3 18)(4 21)(5 24)(6 19)(7 22)(8 17)(9 36)(10 39)(11 34)(12 37)(13 40)(14 35)(15 38)(16 33)(25 41)(26 44)(27 47)(28 42)(29 45)(30 48)(31 43)(32 46)

G:=sub<Sym(48)| (1,31,33)(2,32,34)(3,25,35)(4,26,36)(5,27,37)(6,28,38)(7,29,39)(8,30,40)(9,21,44)(10,22,45)(11,23,46)(12,24,47)(13,17,48)(14,18,41)(15,19,42)(16,20,43), (1,33,31)(2,32,34)(3,35,25)(4,26,36)(5,37,27)(6,28,38)(7,39,29)(8,30,40)(9,44,21)(10,22,45)(11,46,23)(12,24,47)(13,48,17)(14,18,41)(15,42,19)(16,20,43), (1,31,33)(2,32,34)(3,25,35)(4,26,36)(5,27,37)(6,28,38)(7,29,39)(8,30,40)(9,44,21)(10,45,22)(11,46,23)(12,47,24)(13,48,17)(14,41,18)(15,42,19)(16,43,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,20)(2,23)(3,18)(4,21)(5,24)(6,19)(7,22)(8,17)(9,36)(10,39)(11,34)(12,37)(13,40)(14,35)(15,38)(16,33)(25,41)(26,44)(27,47)(28,42)(29,45)(30,48)(31,43)(32,46)>;

G:=Group( (1,31,33)(2,32,34)(3,25,35)(4,26,36)(5,27,37)(6,28,38)(7,29,39)(8,30,40)(9,21,44)(10,22,45)(11,23,46)(12,24,47)(13,17,48)(14,18,41)(15,19,42)(16,20,43), (1,33,31)(2,32,34)(3,35,25)(4,26,36)(5,37,27)(6,28,38)(7,39,29)(8,30,40)(9,44,21)(10,22,45)(11,46,23)(12,24,47)(13,48,17)(14,18,41)(15,42,19)(16,20,43), (1,31,33)(2,32,34)(3,25,35)(4,26,36)(5,27,37)(6,28,38)(7,29,39)(8,30,40)(9,44,21)(10,45,22)(11,46,23)(12,47,24)(13,48,17)(14,41,18)(15,42,19)(16,43,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,20)(2,23)(3,18)(4,21)(5,24)(6,19)(7,22)(8,17)(9,36)(10,39)(11,34)(12,37)(13,40)(14,35)(15,38)(16,33)(25,41)(26,44)(27,47)(28,42)(29,45)(30,48)(31,43)(32,46) );

G=PermutationGroup([[(1,31,33),(2,32,34),(3,25,35),(4,26,36),(5,27,37),(6,28,38),(7,29,39),(8,30,40),(9,21,44),(10,22,45),(11,23,46),(12,24,47),(13,17,48),(14,18,41),(15,19,42),(16,20,43)], [(1,33,31),(2,32,34),(3,35,25),(4,26,36),(5,37,27),(6,28,38),(7,39,29),(8,30,40),(9,44,21),(10,22,45),(11,46,23),(12,24,47),(13,48,17),(14,18,41),(15,42,19),(16,20,43)], [(1,31,33),(2,32,34),(3,25,35),(4,26,36),(5,27,37),(6,28,38),(7,29,39),(8,30,40),(9,44,21),(10,45,22),(11,46,23),(12,47,24),(13,48,17),(14,41,18),(15,42,19),(16,43,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,20),(2,23),(3,18),(4,21),(5,24),(6,19),(7,22),(8,17),(9,36),(10,39),(11,34),(12,37),(13,40),(14,35),(15,38),(16,33),(25,41),(26,44),(27,47),(28,42),(29,45),(30,48),(31,43),(32,46)]])

72 conjugacy classes

class 1 2A2B3A3B3C···3H3I3J3K4A4B6A6B6C···6H6I6J6K6L6M8A8B12A···12H12I···12Q12R···12Y24A···24P
order122333···333344666···6666668812···1212···1212···1224···24
size1136112···2444212112···24443636662···24···412···126···6

72 irreducible representations

dim11111111222222222222222244444444
type+++++++++++++
imageC1C2C2C2C3C6C6C6S3S3D4D6SD16C3×S3C3×S3D12C3⋊D4C3×D4S3×C6C24⋊C2C3×SD16C3×D12C3×C3⋊D4C3×C24⋊C2S32Q82S3C3⋊D12C3×S32C325SD16C3×Q82S3C3×C3⋊D12C3×C325SD16
kernelC3×C325SD16C32×C3⋊C8C32×Dic6C3×C12⋊S3C325SD16C3×C3⋊C8C3×Dic6C12⋊S3C3×C3⋊C8C3×Dic6C32×C6C3×C12C33C3⋊C8Dic6C3×C6C3×C6C3×C6C12C32C32C6C6C3C12C32C6C4C3C3C2C1
# reps11112222111222222244444811122224

Matrix representation of C3×C325SD16 in GL6(𝔽73)

100000
010000
008000
000800
000010
000001
,
100000
010000
001000
000100
000001
00007272
,
100000
010000
0072100
0072000
000010
000001
,
51470000
0100000
0072000
0007200
000010
00007272
,
21570000
64520000
0007200
0072000
000010
00007272

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[51,0,0,0,0,0,47,10,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72],[21,64,0,0,0,0,57,52,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;

C3×C325SD16 in GAP, Magma, Sage, TeX

C_3\times C_3^2\rtimes_5{\rm SD}_{16}
% in TeX

G:=Group("C3xC3^2:5SD16");
// GroupNames label

G:=SmallGroup(432,422);
// by ID

G=gap.SmallGroup(432,422);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,197,92,1011,80,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^3>;
// generators/relations

׿
×
𝔽